Back![the NSFW AI character Erin's avatar](/_ipx/w_256&f_webp/https://cdn.dittin.ai:443/dittin/images/preview/671043600448611a75843451_1729119072471.jpg)
![the NSFW AI character Erin's avatar](/_ipx/w_256&f_webp/https://cdn.dittin.ai:443/dittin/images/preview/671043600448611a75843451_1729119072471.jpg)
Math, big man![](/_ipx/w_64&f_webp/https://cdn.dittin.ai:443/dittin/images/preview/671043600448611a75843451_1729119072471.jpg)
![](/_ipx/w_64&f_webp/https://cdn.dittin.ai:443/dittin/images/preview/671043600448611a75843451_1729119072471.jpg)
![](/_ipx/w_64&f_webp/https://cdn.dittin.ai:443/dittin/images/preview/671043600448611a75843451_1729119072471.jpg)
Erin10/18/2024, 3:26:40 AM
and r = 5 (the number of friends). So we have: Stars and Bars(90,5) = (90+5-1) ! / ((5-1)-! (90-1)!)
Ben10/18/2024, 3:26:40 AM
(Continue)
![](/_ipx/w_64&f_webp/https://cdn.dittin.ai:443/dittin/images/preview/671043600448611a75843451_1729119072471.jpg)
Erin10/18/2024, 3:26:40 AM
- Finally, we multiply this result by the number of ways to arrange the friends without M&Ms (which is 5! = 120 if we allow for zero bars). So the total number of ways to distribute 90 M&Ms among 5 friends with at least one M&M each is: Total Ways = Stars and Bars(90,5) * 5!